The role of biogas in the global energy transition REGATEC 2015, Barcelona Spain Shunichi NAKADA International Renewable Energy Agency ### Introduction to IRENA #### Introduction to IRENA Foundation: 26 January 2009 in Bonn International Agency since April 2011 The only international RE agency worldwide Scope: Hub, voice and source of objective information for renewable energy Mandate: Sustainable deployment of the six forms of renewable energy resources (Biomass, Geothermal, Hydro, Ocean, Solar, Wind) Director-General: Adnan Z. Amin #### Structure and memebership #### Headquarters: Abu Dhabi, United Arab Emirates #### **Three Programmes:** - Innovation and Technology Centre (IITC) in Bonn, Germany - Knowledge, Finance and Policy Centre in Abu Dhabi (KPFC) - Country Support Porgramme in Abu Dhabi (CSP) - Members of the Agency - Signatories/applicants for membership **167 IRENA Parties** Full Members = 140 (139 countries + EU) States in accession = 32 #### Role of Bioenergy and its impact Biomass is a versatile energy source, which will play a significant role in doubling renewable energy by 2030. | Energy security Climate change mitigation Rural development Labor opportunity, income generation Avoid in house air pollution Mitigate the burden for fuel collection labor Food security Biodiversity Life cycle emission increase through land use change, long distance trade Land grab, social equity | Benefits | Trade-offs | |--|---|---| | | Climate change mitigation Rural development Labor opportunity, income generation Avoid in house air pollution Mitigate the burden for fuel collection | Biodiversity Life cycle emission increase through
land use change, long distance trade | To enhance biomass' multi-dimensional role while mitigating the possible trade-offs associated with bio-energy deployment, an effective policy mix is needed rather than a single stand-alone policy or individual policy measures - To achieve above objective, support is required for improved data collection, resource assessment, technology evaluation, capacity building and policy guidance - IRENA is trying to cover these area to collect / share information, exchange best practice, provide policy support ### Bioenergy Activities of IRENA Pernational Renewable Energy Agency | Resource Assessment | Remap2030 Global Atlas Valo-BRES Resource assessment tool for municipality | |--------------------------------|---| | Bioenergy Statistics | 5. IRENA Statistics Questionnaire6. RE Statistics Manual | | Technology and Cost Assessment | 7. IRENA costing reports8. Technology briefs9. Project Navigator | | Capacity building | 10. Capacity building for Entrepreneurs in Western Africa | | Policy support | 11. Bioenergy How2Guide (IEA/IRENA/FAO) | IRENA's activity includes Resource Assessment (Global and local, current and future), Bioenergy Statistics (data collection, methodology improvement), Technology and Cost assessment (cost data collection & assessment, technology guidance for policy maker, project development support), Capacity building (local entrepreneurs support), and Policy support ### **Current biogas application** ### Global renewable energy use by technology and sector, 2010 and in REmap 2030 *including combined heat and power (CHP) and district heat - Currently, biomass accounts for over 80% of renewable energy use globally - traditional use of biomass accounts for about half of all renewables - Three key factors that characterize bioenergy are, flexibility in feedstock and end-use, storability, transferability ### Top 3 countries account for over 70% of global biogas production Status of biogas application is strongly correlated with policy support (i.e. FIT in Germany, subsidy and technical support on small scale digester in China) #### Versatile capacity as energy source Main producers of Biogas in 2012: China (28% of the global production), Germany (22.2%), USA (22%). ^{*} Commercial and public services, industry uses ... ### Biogas power is dominant in EU and USA, while domestic heat is majority in China #### Biogas power: dominant in EU and USA ### Advantage of biogas #### **Fuel flexibility** - Animal waste, municipal solid waste - Sewage sludge - Landfill from waste disposal site - Energy crop - Woody material (Thermal gasification) #### Reduced waste treatment cost - MSW can provide stable feedstock at minimal cost - Long term supply is assured and supply chain is developed by local government - Landfill is common option, but incineration, thermal gasification can also be an alternative #### **Less land use impact** - One of the important concern about bioenergy is "land use change" as crop or wood based biomass use finite land resource for its production - This can cause several issue such as GHG emission, food-energy competition, biodiversity loss - As most of biogas digester use waste / residue as feedstock, it can avoid land use change issue in many case #### **End-use flexibility** - Heat and electricity by CHP - Biomethane for transport fuel - Feedstock for chemical / pharmaceutical industry - Household cooking fuel in developing country - By-product: Biogas-slurry, useful as liquid fertilizer #### **GHG** emission - GHG emission can be negative or positive by number of factor in entire supply chain - Feedstock difference - Transport feedstock, distribution of biogas - CH4 leakage through supply chain - CO2 from biogas combustion is biogenic and does not affect overall GHG emission ## Health impact by replacing traditional biomass heat application - Women and children in developing countries are exposed to indoor air pollution from cooking smoke, up to 20 times higher than WHO recommended level - Time and labor saving for fuel collection - The number of household biogas digester installations exceeded 40 million in 2010, represents 98% of world installed capacity #### Storability, transferability - Once upgraded, biogas can be stored, transferred through natural gas grid system - This increase the applicability of biogas significantly such as, filling peak electricity demand in combination with other renewables (wind, solar) ### **Potential and Barrier** # **Key factors to determine biomass feedstock supply** Supply potential for primary bioenergy feedstocks is estimated by grouping different kinds of biomass into two major categories, namely "primary bioenergy" and "biomass residues & waste" Primary supply potential is based on "total land area and competing land use" and biomass residue & waste is based on the developments in "population and economic activity" #### Biomass supply potential and cost for 2030 - There are significant amount of biomass feedstock available (100-150EJ) to meet increasing demand of bioenergy - Supply cost ranges from as low as 2 USD/GJ to over 20 USD/GJ depending on biomass type and region - Residue and waste represents around 40% of biomass potential with low supply cost 2 5 USD/GJ # Biomass supply potentials by feedstock and region in 2030 Key feedstock in each regions are: Africa: energy crops (5-7 EJ); Asia: residues & waste (15-32 EJ); North America: energy crops (7 EJ) and fuel wood (3 EJ); Latin America: energy crops (16 EJ); Europe: fuel wood (0.3-13 EJ) and energy crops (7 EJ) # Biomass power generation cost for different technology # Cost of biomethane for transport by upgrader type and size #### **Barriers for biogas promotion** - Sustainable supply of feedstock at affordable cost - Efficient supply / distribution chain development - Storage system for feedstock and biogas - Sustainability GHG, land use change, eutrophication, health impact, etc. - High production cost # Policy options to be considered for further promotion of biogas - Prioritize accelerated deployment of sustainable residues and waste biomass in a cost-effective manner - Develop sustainable feedstock supply markets and explore the issue of land use, infrastructure for collection, handling and transport with a view of ensuring sufficient quantities of feedstock at affordable price - Promote the uptake of good practices that foster sustainable agricultural intensification - Deploy sustainability assessment methods, guidelines, standards and labels more widely and put in place risk mitigation and monitoring and evaluation mechanisms based on ongoing initiative such as GBEP sustainability indicator - Continue to support development of innovative biomass applications including advanced biofuels and biomaterials with a view of economically viable applications - Design incentive measure to support early stage of market penetration while adjusting the level of support to improve economic competitiveness ### Thank you www.irena.org snakada@irena.org